Contrastive learning has been studied for improving the performance of sentence embedding learning. The current state-of-the-art method is the SimCSE, which takes dropout as a data augmentation method and feeds a pre-trained Transformer encoder the same input sentence twice. Then, two sentence embeddings derived from different dropout masks can get to build a positive pair. A network being applied a dropout mask can be regarded as a sub-network of itself, whose expected scale is determined by the dropout rate. In this paper, we push most sub-networks with different expected scales can learn similar embedding for the same sentence. SimCSE failed to do so because they fixed the dropout rate to a tuned value, while we sampled dropout rates for each of the dropout functions. As this method will increase the difficulties of optimization, we also propose a simple sentence-wise masks strategy to sample more sub-networks. We evaluated the proposed S-SimCSE on several popular semantic text similarity datasets. Experimental results show that S-SimCSE outperforms the state-of-the-art SimCSE more than $1\%$ on BERT-base.


翻译:为了改进刑罚嵌入学习的绩效,已经研究过反向学习。目前最先进的方法是SimCSE, 它将辍学作为一种数据增强方法, 并给一个受过训练的变异器编码器提供相同的输入句两次。 然后, 由不同的辍学面罩产生的两句嵌入句可以形成一个正面的配对。 正在应用的网络可以被视为自己的子网络, 其预期规模由辍学率决定。 在本文中, 我们推动大多数具有不同预期尺度的子网络可以学习类似的同一句子嵌入。 SimCSE没有这样做, 因为他们将辍学率固定在一个调值上, 而我们为每个辍学功能抽样了辍学率。 由于这种方法会增加优化难度, 我们还提出一个简单的句式面具战略, 以抽样更多的子网络。 我们在几个流行的语义文本类似数据集上评估了拟议的S-SIMCSEEE。 实验结果表明, SIMCSEE比SimCSEE在BERBasbase上的状态更符合SimCSE值。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
207+阅读 · 2019年9月30日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
4+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
5+阅读 · 2020年10月22日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
4+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员