Data augmentation is a technique to improve the generalization ability of machine learning methods by increasing the size of the dataset. However, since every augmentation method is not equally effective for every dataset, you need to carefully select the best method. We propose a neural network that dynamically selects the best combination using a mutually beneficial gating network and a feature consistency loss. The gating network is able to control how much of each data augmentation is used for the representation within the network. The feature consistency loss, on the other hand, gives a constraint that augmented features from the same input should be in similar. In experiments, we demonstrate the effectiveness of the proposed method on the 12 largest time-series datasets from 2018 UCR Time Series Archive and reveal the relationships between the data augmentation methods through analysis of the proposed method.
翻译:数据增强是通过增加数据集的大小来提高机器学习方法的通用能力的一种技术。 但是,由于每个增强方法对每个数据集的效果不尽相同,你需要仔细选择最佳方法。 我们提议一个神经网络, 以动态方式选择最佳组合, 使用互利的带宽网络和特征一致性损失。 标记网络能够控制每个数据增强方法中有多少用于网络内的代表。 另一方面, 特征一致性损失造成一个限制, 使得同一输入的特性增强, 应该处于类似状态。 在实验中, 我们展示了2018 UCR 时间序列归档的12个最大时间序列数据集的拟议方法的有效性, 并通过分析拟议方法揭示了数据增强方法之间的关系 。