Deep neural networks often make decisions based on the spurious correlations inherent in the dataset, failing to generalize in an unbiased data distribution. Although previous approaches pre-define the type of dataset bias to prevent the network from learning it, recognizing the bias type in the real dataset is often prohibitive. This paper proposes a novel bias-tailored augmentation-based approach, BiaSwap, for learning debiased representation without requiring supervision on the bias type. Assuming that the bias corresponds to the easy-to-learn attributes, we sort the training images based on how much a biased classifier can exploits them as shortcut and divide them into bias-guiding and bias-contrary samples in an unsupervised manner. Afterwards, we integrate the style-transferring module of the image translation model with the class activation maps of such biased classifier, which enables to primarily transfer the bias attributes learned by the classifier. Therefore, given the pair of bias-guiding and bias-contrary, BiaSwap generates the bias-swapped image which contains the bias attributes from the bias-contrary images, while preserving bias-irrelevant ones in the bias-guiding images. Given such augmented images, BiaSwap demonstrates the superiority in debiasing against the existing baselines over both synthetic and real-world datasets. Even without careful supervision on the bias, BiaSwap achieves a remarkable performance on both unbiased and bias-guiding samples, implying the improved generalization capability of the model.
翻译:深心神经网络往往根据数据集内在的虚假关联做出决策,无法在公正的数据分布中一概而论。虽然先前的做法是预先确定数据集偏差的类型,以防止网络学习它,但认识到真实数据集中的偏差类型往往令人望而却步。本文建议采用新颖的偏差定制增强型方法,即BiaSwap,以学习偏差偏差代表制,而无需对偏差类型进行监督。假设偏差与容易理解的偏差性属性相对应,我们根据偏差分类者如何利用它们作为捷径并将其分成偏向性和偏向性偏向性样本,以不受监督的方式将其分成。随后,我们将图像翻译模式的风格转移模块与这种偏差分类器的班级启动型地图(BiaSwap)相融合,这主要可以转移分类者所学的偏差属性,而无需对偏差和偏差偏差偏向性特征进行监督。我们根据偏差分类师的偏差分类方法对称,我们根据偏颇的分类方法对称的图像进行了分类,我们根据偏差分类图解的图像进行分类,将它们用作捷径的图像作为捷径的缩图,并将它们分成分为的样本分成分成分为分分分,将它们分成分为分为分为,在不偏向性标定,同时将它们分成分解地将它们分成分成分成成为偏向性标定,在不偏向性图图图图图,同时在不偏向性图中,在不偏向性图像上,在不偏向性图中,在不偏向上,在不偏向性地标定,同时在不偏直地标定的图像上对地标的图中,同时,同时,在不偏直地标地标地标地标地标上对地标地标地标,在不比地标,在不比地标地标,同时,同时,同时在不比地标地标地标地标地标地标地标地标地标地标地标上,在不比地标地标地标地标地标地标地标地标上,同时,同时,同时,在不偏向地标地标地标地标地标地标地标地标地标地标地标地标上对地标上对地标上