Distributed optimization is ubiquitous in emerging applications, such as robust sensor network control, smart grid management, machine learning, resource slicing, and localization. However, the extensive data exchange among local and central nodes may cause a severe communication bottleneck. To overcome this challenge, over-the-air computing (AirComp) is a promising medium access technology, which exploits the superposition property of the wireless multiple access channel (MAC) and offers significant bandwidth savings. In this work, we propose an AirComp framework for general distributed convex optimization problems. Specifically, a distributed primaldual (DPD) subgradient method is utilized for the optimization procedure. Under general assumptions, we prove that DPDAirComp can asymptotically achieve zero expected constraint violation. Therefore, DPD-AirComp ensures the feasibility of the original problem, despite the presence of channel fading and additive noise. Moreover, with proper power control of the users' signals, the expected non-zero optimality gap can also be mitigated. Two practical applications of the proposed framework are presented, namely, smart grid management and wireless resource allocation. Finally, numerical results reconfirm DPDAirComp's excellent performance, while it is also shown that DPD-AirComp converges an order of magnitude faster compared to a digital orthogonal multiple access scheme, specifically, time division multiple access (TDMA).
翻译:分散式优化在新兴应用中普遍存在,例如强大的传感器网络控制、智能电网管理、机器学习、资源筛选和本地化。然而,地方和中央节点之间的广泛数据交换可能会造成严重的通信瓶颈。为了克服这一挑战,超空计算(AirComp)是一种充满希望的中位接入技术,它利用无线多接入频道(MAC)的叠加特性,并节省了大量带宽。在这项工作中,我们提议为一般分布式锥形优化问题建立一个AirComp框架。具体地说,为优化程序采用了分散的原始(DPD)次位法。在一般假设下,我们证明DPDairComp(DPDAComp)能够自动实现预期的零限制。因此,尽管存在频道消沉和添加噪音,但DPDAComComp(A)确保原始问题的可行性。此外,如果对用户信号进行适当控制,预期的非零最佳性差距也可以缩小。拟议的框架有两种实际应用,即智能电网管理和无线资源管理用于优化程序。根据一般假设,我们证明,DPDACompal多重访问程序也显示一个极快速的数字访问分级,同时显示极快速访问程序。