Bayesian optimization (BO) is a widely used approach for computationally expensive black-box optimization such as simulator calibration and hyperparameter optimization of deep learning methods. In BO, a dynamically updated computationally cheap surrogate model is employed to learn the input-output relationship of the black-box function; this surrogate model is used to explore and exploit the promising regions of the input space. Multipoint BO methods adopt a single manager/multiple workers strategy to achieve high-quality solutions in shorter time. However, the computational overhead in multipoint generation schemes is a major bottleneck in designing BO methods that can scale to thousands of workers. We present an asynchronous-distributed BO (ADBO) method wherein each worker runs a search and asynchronously communicates the input-output values of black-box evaluations from all other workers without the manager. We scale our method up to 4,096 workers and demonstrate improvement in the quality of the solution and faster convergence. We demonstrate the effectiveness of our approach for tuning the hyperparameters of neural networks from the Exascale computing project CANDLE benchmarks.
翻译:Bayesian优化(BO)是一种广泛使用的计算昂贵黑箱优化方法,如模拟校准和深层学习方法的超光度校准等。在BO中,采用一种动态更新的计算廉价替代模型来学习黑箱功能的输入-输出关系;这种代用模型用来探索和利用输入空间中充满希望的区域。多点BO方法采用单一的经理/多功能工人战略,在较短的时间内实现高质量的解决方案。然而,多点生成计划中的计算间接费用是设计BO方法的主要瓶颈,可以向数以千计的工人推广。我们提出了一种无同步分布式BO(ABBO)方法,让每个工人在其中进行搜索,并尽可能同步地向没有管理人员的所有其他工人传达黑箱评价的输入-输出值。我们将我们的方法提高到4 096名工人,并表明解决方案的质量提高和更快的趋同性。我们从Exasial 计算机项目 CANDLE的基准中调整神经网络的超偏差度仪的有效性。