Ranks estimated from data are uncertain and this poses a challenge in many applications. However, estimated ranks are deterministic functions of estimated parameters, so the uncertainty in the ranks must be determined by the uncertainty in the parameter estimates. We give a complete characterization of this relationship in terms of the linear extensions of a partial order determined by interval estimates of the parameters of interest. We then use this relationship to give a set estimator for the overall ranking, use its size to measure the uncertainty in a ranking, and give efficient algorithms for several questions of interest. We show that our set estimator is a valid confidence set and describe its relationship to a joint confidence set for ranks recently proposed by Klein, Wright \& Wieczorek. We apply our methods to both simulated and real data and make them available through the R package rankUncertainty.
翻译:根据数据估计的等级是不确定的,这在许多应用中构成挑战。然而,估计的等级是估计参数的决定性功能,因此,等级的不确定性必须根据参数估计的不确定性来决定。我们用对利益参数的间隙估计所决定的部分顺序的线性扩展来完整地描述这种关系。我们然后利用这种关系来为总体排名提供一个设定的估算符,用其大小来测量排名的不确定性,并为若干感兴趣的问题提供有效的算法。我们表明,我们设定的估数是一套有效的信任,并描述它与克莱因·赖特·维乔雷克最近提议的等级联合信任体系的关系。我们运用我们的方法来模拟和真实的数据,并通过R 包的分类分类提供这些数据。