We consider the dictionary-based ROM-net (Reduced Order Model) framework [T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, Model order reduction assisted by deep neural networks (ROM-net), Advanced modeling and Simulation in Engineering Sciences 7 (16), 2020] and summarize the underlying methodologies and their recent improvements. The main contribution of this work is the application of the complete workflow to a real-life industrial model of an elastoviscoplastic high-pressure turbine blade subjected to thermal, centrifugal and pressure loadings, for the quantification of the uncertainty on dual quantities (such as the accumulated plastic strain and the stress tensor), generated by the uncertainty on the temperature loading field. The dictionary-based ROM-net computes predictions of dual quantities of interest for 1008 Monte Carlo draws of the temperature loading field in 2 hours and 48 minutes, which corresponds to a speedup greater than 600 with respect to a reference parallel solver using domain decomposition, with a relative error in the order of 2%. Another contribution of this work consists in the derivation of a meta-model to reconstruct the dual quantities of interest over the complete mesh from their values on the reduced integration points.
翻译:我们认为基于字典的ROM-net(减少顺序模型)框架[T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, 由深神经网络(ROM-net)、工程科学7(16, 2020)的高级模型和模拟 协助的减少命令模型,并概述了基本方法及其最近的改进,这项工作的主要贡献是将完整的工作流程应用于一个实际的工业模型,即受热、离心和压力载荷的弹性塑料塑胶高压涡轮机叶真实的活性模型,以量化因温度装载场的不确定性(如累积的塑料紧张和压力振动),基于字典的ROM-net计算预测了1008 Monte Carlo在2小时48分钟内抽取温度装填场的双量,这相当于加速了600多个参考平行解压缩器,使用域解压缩,相对误差为2%。这项工作的另一项全面贡献是将数值从减少的元模的数值推算出,以双重的数值推高。