The problem of broad practical interest in spatiotemporal data analysis, i.e., discovering interpretable dynamic patterns from spatiotemporal data, is studied in this paper. Towards this end, we develop a time-varying reduced-rank vector autoregression (VAR) model whose coefficient matrices are parameterized by low-rank tensor factorization. Benefiting from the tensor factorization structure, the proposed model can simultaneously achieve model compression and pattern discovery. In particular, the proposed model allows one to characterize nonstationarity and time-varying system behaviors underlying spatiotemporal data. To evaluate the proposed model, extensive experiments are conducted on various spatiotemporal data representing different nonlinear dynamical systems, including fluid dynamics, sea surface temperature, USA surface temperature, and NYC taxi trips. Experimental results demonstrate the effectiveness of modeling spatiotemporal data and characterizing spatial/temporal patterns with the proposed model. In the spatial context, the spatial patterns can be automatically extracted and intuitively characterized by the spatial modes. In the temporal context, the complex time-varying system behaviors can be revealed by the temporal modes in the proposed model. Thus, our model lays an insightful foundation for understanding complex spatiotemporal data in real-world dynamical systems. The adapted datasets and Python implementation are publicly available at https://github.com/xinychen/vars.
翻译:本文研究的是广泛实际关注地热时热数据分析的问题,即发现地热时热数据中可解释的动态模式。为此,我们开发了一种时间变化式的降低级矢量自动递减模型,其系数矩阵以低度振量乘因因子化参数化为参数。从强因子化结构中受益,拟议的模型可以同时实现模型压缩和模式发现。特别是,拟议的模型允许人们描述非静态和时间变化系统在空间时热数据背后的行为特征。为了评估拟议的模型,对代表不同非线性动态系统的各种表面变化数据进行了广泛的实验,包括流动动态、海面温度、美国表面温度和NYC出租车旅行等。实验结果显示,模拟时热数据数据模型和与拟议模型的空间/模式的特征可以自动提取空间模式,并直截地描述空间数据。在时间变化模型中,复杂的时间变化/时间变化系统执行方式可以显示,在空间模型中,在模型中复杂的时间变化/空间模式下,在现实空间模式中,可展示的系统实施方式。