Deep state space models (SSMs) are an actively researched model class for temporal models developed in the deep learning community which have a close connection to classic SSMs. The use of deep SSMs as a black-box identification model can describe a wide range of dynamics due to the flexibility of deep neural networks. Additionally, the probabilistic nature of the model class allows the uncertainty of the system to be modelled. In this work a deep SSM class and its parameter learning algorithm are explained in an effort to extend the toolbox of nonlinear identification methods with a deep learning based method. Six recent deep SSMs are evaluated in a first unified implementation on nonlinear system identification benchmarks.
翻译:深层状态空间模型(SSMs)是深层学习界开发的时间模型的积极研究模型类,与经典的 SMS关系密切。深层 SMS作为黑盒识别模型可以描述由于深神经网络的灵活性而产生的多种动态。此外,该模型类的概率性使得可以模拟系统的不确定性。在这项工作中,对深层 SSM 类及其参数学习算法进行了解释,以努力以深层学习为基础的方法扩展非线性识别方法工具箱。在非线性系统识别基准的首次统一实施中,对最近深层 SMS进行了六项评估。