Despite their deterministic nature, dynamical systems often exhibit seemingly random behaviour. Consequently, a dynamical system is usually represented by a probabilistic model of which the unknown parameters must be estimated using statistical methods. When measuring the uncertainty of such parameter estimation, the bootstrap stands out as a simple but powerful technique. In this paper, we develop the bootstrap for dynamical systems and establish not only its consistency but also its second-order efficiency via a novel \textit{continuous} Edgeworth expansion for dynamical systems. This is the first time such continuous Edgeworth expansions have been studied. Moreover, we verify the theoretical results about the bootstrap using computer simulations.


翻译:动态系统尽管具有确定性,但往往表现出看似随机的行为。 因此,动态系统通常代表一种概率模型,其中未知参数必须使用统计方法加以估计。 在测量这种参数估计的不确定性时,靴子陷阱是一个简单而有力的技术。 在本文中,我们为动态系统开发靴子陷阱,不仅通过新颖的 \ textit{continy} Edgeworth 扩展动态系统来建立其一致性,而且还通过新颖的 \ textit{continy} Edgeworth 扩展来建立其二阶效率。 这是首次用计算机模拟来研究这种持续的 Edgeworth 扩展。 此外,我们用计算机模拟来验证关于靴子陷阱的理论结果。

0
下载
关闭预览

相关内容

专知会员服务
95+阅读 · 2021年8月28日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月13日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员