Despite their deterministic nature, dynamical systems often exhibit seemingly random behaviour. Consequently, a dynamical system is usually represented by a probabilistic model of which the unknown parameters must be estimated using statistical methods. When measuring the uncertainty of such parameter estimation, the bootstrap stands out as a simple but powerful technique. In this paper, we develop the bootstrap for dynamical systems and establish not only its consistency but also its second-order efficiency via a novel \textit{continuous} Edgeworth expansion for dynamical systems. This is the first time such continuous Edgeworth expansions have been studied. Moreover, we verify the theoretical results about the bootstrap using computer simulations.
翻译:动态系统尽管具有确定性,但往往表现出看似随机的行为。 因此,动态系统通常代表一种概率模型,其中未知参数必须使用统计方法加以估计。 在测量这种参数估计的不确定性时,靴子陷阱是一个简单而有力的技术。 在本文中,我们为动态系统开发靴子陷阱,不仅通过新颖的 \ textit{continy} Edgeworth 扩展动态系统来建立其一致性,而且还通过新颖的 \ textit{continy} Edgeworth 扩展来建立其二阶效率。 这是首次用计算机模拟来研究这种持续的 Edgeworth 扩展。 此外,我们用计算机模拟来验证关于靴子陷阱的理论结果。