In a recent study of auditory evoked potential (AEP) based brain-computer interface (BCI), it was shown that, with an encoder-decoder framework, it is possible to translate human neural activity to speech (T-CAS). However, current encoder-decoder-based methods achieve T-CAS often with a two-step method where the information is passed between the encoder and decoder with a shared dimension reduction vector, which may result in a loss of information. A potential approach to this problem is to design an end-to-end method by using a dual generative adversarial network (DualGAN) without dimension reduction of passing information, but it cannot realize one-to-one signal-to-signal translation (see Fig.1 (a) and (b)). In this paper, we propose an end-to-end model to translate human neural activity to speech directly, create a new electroencephalogram (EEG) datasets for participants with good attention by design a device to detect participants' attention, and introduce a dual-dual generative adversarial network (Dual-DualGAN) (see Fig. 1 (c) and (d)) to address an end-to-end translation of human neural activity to speech (ET-CAS) problem by group labelling EEG signals and speech signals, inserting a transition domain to realize cross-domain mapping. In the transition domain, the transition signals are cascaded by the corresponding EEG and speech signals in a certain proportion, which can build bridges for EEG and speech signals without corresponding features, and realize one-to-one cross-domain EEG-to-speech translation. The proposed method can translate word-length and sentence-length sequences of neural activity to speech. Experimental evaluation has been conducted to show that the proposed method significantly outperforms state-of-the-art methods on both words and sentences of auditory stimulus.


翻译:在最近对听力触发潜力(AEP)的大脑-计算机界面(BCI)的研究中,发现使用一个编码器-解码器框架,可以将人类神经活动转换为语音(T-CAS),但目前基于编码器-解码器的方法往往能以两步方法实现T-CAS,信息在编码器和解码器之间传递,并具有共同的减少维度矢量矢量,这可能导致信息丢失。这一问题的一个潜在办法是设计一种端对端方法,即使用双级正对端信号网络(DualGAN)来设计一个端对端信号(DalGAN),使用双端的直立式语音信号网络(DalGAN)来减少传递信息,但无法实现一对一对一的信号-信号到信号转换(见Fig.1(a)和(b))。 在本文中,我们提出了一个端对端将人类神经活动转换为直方,创建新的电脑图(EEEEEEEG),通过设计一个可检测参与者注意的装置,并在一个双端对端的语音语音语音语音语音信号转换中引入一个双向电子-EEEEE-E-e-e-eq-eq-eal-de-de-al-al-alal-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-alup-com-al-al-al-com-al-alup-de-de-de-de-de-com-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-comm-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-

0
下载
关闭预览

相关内容

生成对抗网络 (Generative Adversarial Network, GAN) 是一类神经网络,通过轮流训练判别器 (Discriminator) 和生成器 (Generator),令其相互对抗,来从复杂概率分布中采样,例如生成图片、文字、语音等。GAN 最初由 Ian Goodfellow 提出,原论文见 Generative Adversarial Networks

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年4月3日
VIP会员
相关VIP内容
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员