We study the problem of recovering the common $k$-sized support of a set of $n$ samples of dimension $d$, using $m$ noisy linear measurements per sample. Most prior work has focused on the case when $m$ exceeds $k$, in which case $n$ of the order $(k/m)\log(d/k)$ is both necessary and sufficient. Thus, in this regime, only the total number of measurements across the samples matter, and there is not much benefit in getting more than $k$ measurements per sample. In the measurement-constrained regime where we have access to fewer than $k$ measurements per sample, we show an upper bound of $O((k^{2}/m^{2})\log d)$ on the sample complexity for successful support recovery when $m\ge 2\log d$. Along with the lower bound from our previous work, this shows a phase transition for the sample complexity of this problem around $k/m=1$. In fact, our proposed algorithm is sample-optimal in both the regimes. It follows that, in the $m\ll k$ regime, multiple measurements from the same sample are more valuable than measurements from different samples.
翻译:我们研究的是利用每份抽样的噪音线性测量数据,以美元为单位,回收一组维度样本的通用美元规模支持美元美元(美元)的问题,大多数先前工作的重点是当美元超过美元(美元)时的抽样复杂性为美元(k/m)\log(d/k)美元,在这种情况下,如果按美元(k/m)\log(k)美元(d/k)美元排序,则既必要又足够,因此,在这一制度中,只有各抽样事项的测量总数,而且每份抽样得到超过美元(k)美元的测量数据,没有多大好处。在每份抽样中,我们所拟议的测量算法都是抽样-最佳的。 因此,在价值为美元(k)/m)/m2}/log(d)美元(d)美元(log)的抽样复杂性方面,抽样复杂性在2美元/m/log美元(d)美元/k美元(美元)的恢复成功支持方面,与我们以往工作的较低约束相比,这显示了这一问题的取样复杂性在1美元/m=1美元左右的阶段的转变。事实上,我们提议的算算算算出两种制度都比较有价值的抽样的多种测量。