This paper deals with distributed policy optimization in reinforcement learning, which involves a central controller and a group of learners. In particular, two typical settings encountered in several applications are considered: multi-agent reinforcement learning (RL) and parallel RL, where frequent information exchanges between the learners and the controller are required. For many practical distributed systems, however, the overhead caused by these frequent communication exchanges is considerable, and becomes the bottleneck of the overall performance. To address this challenge, a novel policy gradient approach is developed for solving distributed RL. The novel approach adaptively skips the policy gradient communication during iterations, and can reduce the communication overhead without degrading learning performance. It is established analytically that: i) the novel algorithm has convergence rate identical to that of the plain-vanilla policy gradient; while ii) if the distributed learners are heterogeneous in terms of their reward functions, the number of communication rounds needed to achieve a desirable learning accuracy is markedly reduced. Numerical experiments corroborate the communication reduction attained by the novel algorithm compared to alternatives.


翻译:本文论述在强化学习方面分散的政策优化,涉及中央控制员和一组学习者。特别是,在若干应用中遇到的两个典型环境得到考虑:多剂强化学习(RL)和平行RL,需要学习者与控制者经常交流信息。然而,对于许多实际分布的系统来说,这些频繁的交流交流所引发的间接费用相当可观,成为总体业绩的瓶颈。为了应对这一挑战,制定了一种新的政策梯度方法来解决分布式学习。新颖方法在迭代期间适应性地跳过政策梯度通信,可以减少通信间接费用而不降低学习成绩。它从分析上确定:(1) 新的算法具有与平凡利政策梯度相同的趋同率;(2) 如果分布的学习者在奖励功能方面各不相同,则实现理想学习准确性所需的通信轮数明显减少。数字实验证实了新算法相对于替代法的通信减少。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2020年1月17日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员