This paper presents a study on the integral equation method and the Nyst\"{o}m method for the scattering of time-harmonic acoustic waves by a two-layered medium with an unbounded perturbed boundary. The medium consists of two layers separated by a plane interface, for which we assume transmission boundary conditions. We assume either Dirichlet or impedance boundary conditions for the rough surface boundary. Unlike classical rough surface scattering problems, the presence of a plane interface makes it difficult to establish the well-posedness of the scattering problem and to find a numerical treatment. We introduce the two-layered Green function and prove that this function has similar asymptotic decay properties to the half-space Green function. By using a similar approach to classical rough surface problems, we establish the uniqueness of the scattering problem. We derive the integral equation formulations using the two-layered Green function as the integral kernel and use them to prove the existence of the scattering problem. Furthermore, we propose the Nyst\"{o}m method for discretizing the integral equations and establish its convergence. Finally, we perform numerical experiments to demonstrate the effectiveness of the Nyst\"{o}m method.


翻译:本文介绍了对整体方程法和Nyst\"{o}m 方法的研究, 即用两层介质将时间- 和谐声波以无边绕边界的两层介质散开。 介质由平面界面隔开的两层组成, 我们假定是传输边界条件。 我们假设是粗地表边界的分解或阻隔边界条件。 不同于传统的粗地表分散问题, 平面接口的存在使得难以确定散射问题的妥善位置并找到数字处理方法。 我们引入了两层绿色函数, 并证明这一函数与半空绿色函数相似。 我们通过对典型的粗地表问题采取类似的方法, 确定了分散问题的独特性。 我们用两层绿色函数作为整体内核, 并用它们来证明散射问题的存在。 此外, 我们提议了将整体方程式分解并确立其趋同性。 最后, 我们通过使用数字实验来展示 Ny\ 的方法 。</s>

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
专知会员服务
123+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
0+阅读 · 2023年4月22日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员