This paper presents a study on the integral equation method and the Nyst\"{o}m method for the scattering of time-harmonic acoustic waves by a two-layered medium with an unbounded perturbed boundary. The medium consists of two layers separated by a plane interface, for which we assume transmission boundary conditions. We assume either Dirichlet or impedance boundary conditions for the rough surface boundary. Unlike classical rough surface scattering problems, the presence of a plane interface makes it difficult to establish the well-posedness of the scattering problem and to find a numerical treatment. We introduce the two-layered Green function and prove that this function has similar asymptotic decay properties to the half-space Green function. By using a similar approach to classical rough surface problems, we establish the uniqueness of the scattering problem. We derive the integral equation formulations using the two-layered Green function as the integral kernel and use them to prove the existence of the scattering problem. Furthermore, we propose the Nyst\"{o}m method for discretizing the integral equations and establish its convergence. Finally, we perform numerical experiments to demonstrate the effectiveness of the Nyst\"{o}m method.
翻译:本文介绍了对整体方程法和Nyst\"{o}m 方法的研究, 即用两层介质将时间- 和谐声波以无边绕边界的两层介质散开。 介质由平面界面隔开的两层组成, 我们假定是传输边界条件。 我们假设是粗地表边界的分解或阻隔边界条件。 不同于传统的粗地表分散问题, 平面接口的存在使得难以确定散射问题的妥善位置并找到数字处理方法。 我们引入了两层绿色函数, 并证明这一函数与半空绿色函数相似。 我们通过对典型的粗地表问题采取类似的方法, 确定了分散问题的独特性。 我们用两层绿色函数作为整体内核, 并用它们来证明散射问题的存在。 此外, 我们提议了将整体方程式分解并确立其趋同性。 最后, 我们通过使用数字实验来展示 Ny\ 的方法 。</s>