We present a method for learning latent stochastic differential equations (SDEs) from high-dimensional time series data. Given a high-dimensional time series generated from a lower dimensional latent unknown It\^o process, the proposed method learns the mapping from ambient to latent space, and the underlying SDE coefficients, through a self-supervised learning approach. Using the framework of variational autoencoders, we consider a conditional generative model for the data based on the Euler-Maruyama approximation of SDE solutions. Furthermore, we use recent results on identifiability of latent variable models to show that the proposed model can recover not only the underlying SDE coefficients, but also the original latent variables, up to an isometry, in the limit of infinite data. We validate the method through several simulated video processing tasks, where the underlying SDE is known, and through real world datasets.
翻译:我们提出了一个从高维时间序列数据中学习潜在随机差异方程式的方法。考虑到从低维潜伏未知的It ⁇ o过程产生的高维时间序列,拟议方法通过自我监督的学习方法,从环境空间到潜空间学习绘图,并从潜在的SDE系数学习基本SDE系数。我们利用变异自动计算器框架,考虑以SDE解决方案的欧勒-海洋近似为基础,为数据设定一个有条件的基因化模型。此外,我们使用关于潜在变量模型可识别性的最新结果,以表明拟议模型不仅可以恢复基本SDE系数,还可以恢复原始潜在变量,直至无限数据限量的异度。我们通过若干模拟视频处理任务,即基本SDE已知的视频处理任务,以及通过真实世界数据集,验证该方法。