We introduce a call-by-name lambda-calculus $\lambda J$ with generalized applications which integrates a notion of distant reduction that allows to unblock $\beta$-redexes without resorting to the permutative conversions of generalized applications. We show strong normalization of simply typed terms, and we then fully characterize strong normalization by means of a quantitative typing system. This characterization uses a non-trivial inductive definition of strong normalization --that we relate to others in the literature--, which is based on a weak-head normalizing strategy. Our calculus relates to explicit substitution calculi by means of a translation between the two formalisms which is faithful, in the sense that it preserves strong normalization. We show that our calculus $\lambda J$ and the well-know calculus $\Lambda J$ determine equivalent notions of strong normalization. As a consequence, $\Lambda J$ inherits a faithful translation into explicit substitutions, and its strong normalization can be characterized by the quantitative typing system designed for $\lambda J$, despite the fact that quantitative subject reduction fails for permutative conversions.
翻译:我们引入了一个名为 embda-caculus $\ lumbda J$的调用性通用应用,该调用性应用结合了一种远程削减的概念,允许在不采用通用应用的调换性转换方式的情况下解封$\beta$-redexs,从而可以解冻美元/beta$-redexs,我们展示了简单的打字术语的高度正常化,然后我们通过定量打字系统来充分描述强烈正常化的特征。这种定性使用了一种非三进制的强烈正常化定义,即我们与文献中其他人相关的定义,该定义基于一个弱头的标准化战略。我们的微积分是指通过两种忠实的正式主义之间的翻译来明确替代计算。从保持高度正常化的意义上讲,我们展示了我们的微积分 $\lambda J$ 和众所周知的微积分体积分($\Lambda J$) 来决定强烈正常化的同等概念。因此, $Lambda J$继承了一种忠实的翻译,以明确的替换为明确的替代,其强烈的正常化的特征可以被设计为用于 $\lambda Jmulot 的定量转换的量化的量化的分类系统所失。