Template-based synthesis, also known as sketching, is a localized approach to program synthesis in which the programmer provides not only a specification, but also a high-level ``sketch'' of the program. The sketch is basically a partial program that models the general intuition of the programmer, while leaving the low-level details as unimplemented ``holes''. The role of the synthesis engine is then to fill in these holes such that the completed program satisfies the desired specification. In this work, we focus on template-based synthesis of polynomial imperative programs with real variables, i.e.~imperative programs in which all expressions appearing in assignments, conditions and guards are polynomials over program variables. While this problem can be solved in a sound and complete manner by a reduction to the first-order theory of the reals, the resulting formulas will contain a quantifier alternation and are extremely hard for modern SMT solvers, even when considering toy programs with a handful of lines. Moreover, the classical algorithms for quantifier elimination are notoriously unscalable and not at all applicable to this use-case. In contrast, our main contribution is an algorithm, based on several well-known theorems in polyhedral and real algebraic geometry, namely Putinar's Positivstellensatz, the Real Nullstellensatz, Handelman's Theorem and Farkas' Lemma, which sidesteps the quantifier elimination difficulty and reduces the problem directly to Quadratic Programming (QP). Alternatively, one can view our algorithm as an efficient way of eliminating quantifiers in the particular formulas that appear in the synthesis problem. The resulting QP instances can then be handled quite easily by SMT solvers. Notably, our reduction to QP is sound and semi-complete, i.e.~it is complete if polynomials of a sufficiently high degree are used in the templates...


翻译:基于模板的合成, 也称为草图, 是一种本地化的程序合成方法, 程序员不仅提供一个规格, 而且还提供高层次的“ sketch' ” 程序。 素描基本上是一个部分程序, 用来模拟程序员的一般直观, 而将低层次的细节保留为未执行的“ 洞穴” 。 合成引擎的作用就是填补这些洞口, 这样完成的程序就能满足所期望的规格 。 在这项工作中, 我们侧重于基于模板的多语种程序合成, 包括真实变量, 即 ~ 简化程序, 其中所有在任务、 条件和警卫中的表达方式都是多级的 Q; 虽然这个问题可以通过降低程序头等理论的直观和完整的方式来解决, 但所产生的公式将包含一个量化的变异种, 即使在考虑微调程序时, 也可以通过几条线来彻底地消除。 此外, 彩色的经典算算法是难以形容的, 并且不能完全适用于此用途的边端点 QQQ 。, 并且 以直径的平面的平面的平面的变的变的变式 。 。,, 平式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式,, 以一个正常的变式的变式是, 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月18日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员