Sports organizations often want to estimate athlete strengths. For games with scored outcomes, a common approach is to assume observed game scores follow a normal distribution conditional on athletes' latent abilities, which may change over time. In many games, however, this assumption of conditional normality does not hold. To estimate athletes' time-varying latent abilities using non-normal game score data, we propose a Bayesian dynamic linear model with flexible monotone response transformations. Our model learns nonlinear monotone transformations to address non-normality in athlete scores and can be easily fit using standard regression and optimization routines. We demonstrate our method on data from several Olympic sports, including biathlon, diving, rugby, and fencing.
翻译:体育组织往往希望估计运动员的实力。 对于有得分成绩的游戏,一个共同的办法是假设观察到的比赛分数是取决于运动员潜伏能力的正常分布条件,这可能会随着时间的变化而变化。然而,在许多游戏中,这种有条件正常度的假设是站不住脚的。为了使用非正常的比赛分数数据来估计运动员时间变化的潜伏能力,我们建议采用一个具有灵活的单调反应变换的贝叶斯动态线性模型。我们的模型学习非线性单调变换,以解决运动员分数中的非正常性,并且可以很容易地使用标准的回归和优化常规。我们展示了我们从几场奥林匹克运动中获取数据的方法,包括贝雅特隆、潜水、橄榄球和栅栏。