Medical imaging plays a vital role in modern diagnostics and treatment. The temporal nature of disease or treatment progression often results in longitudinal data. Due to the cost and potential harm, acquiring large medical datasets necessary for deep learning can be difficult. Medical image synthesis could help mitigate this problem. However, until now, the availability of GANs capable of synthesizing longitudinal volumetric data has been limited. To address this, we use the recent advances in latent space-based image editing to propose a novel joint learning scheme to explicitly embed temporal dependencies in the latent space of GANs. This, in contrast to previous methods, allows us to synthesize continuous, smooth, and high-quality longitudinal volumetric data with limited supervision. We show the effectiveness of our approach on three datasets containing different longitudinal dependencies. Namely, modeling a simple image transformation, breathing motion, and tumor regression, all while showing minimal disentanglement. The implementation is made available online at https://github.com/julschoen/Temp-GAN.
翻译:医学成像在现代诊断和治疗中发挥着关键作用。疾病或治疗过程的暂时性往往导致纵向数据。由于成本和潜在伤害,很难获得深层学习所需的大型医学数据集。医学成像合成可有助于缓解这一问题。然而,到目前为止,能够合成纵向体积数据的GAN系统有限。为了解决这个问题,我们利用基于潜伏空间的图像编辑的最新进展,提出一个新的联合学习计划,明确将时间依赖性嵌入GAN的潜伏空间。这与以往的方法不同,使我们能够在有限的监督下合成连续、平稳和高质量的长纵向体积数据。我们展示了我们对于包含不同纵向依赖性的三种数据集的做法的有效性。也就是说,建模简单的图像转换、呼吸动作和肿瘤回归,所有这些都显示最小的分解。实施方法可在https://github.com/julschoen/Temp-GAN网上查阅。