A wireless acoustic sensor network records audio signals with sampling time and sampling rate offsets between the audio streams, if the analog-digital converters (ADCs) of the network devices are not synchronized. Here, we introduce a new sampling rate offset model to simulate time-varying sampling frequencies caused, for example, by temperature changes of ADC crystal oscillators, and propose an estimation algorithm to handle this dynamic aspect in combination with changing acoustic source positions. Furthermore, we show how deep neural network based estimates of the distances between microphones and human speakers can be used to determine the sampling time offsets. This enables a synchronization of the audio streams to reflect the physical time differences of flight.
翻译:如果网络设备的模拟数字转换器(ADCs)不同步,无线声传感器网络记录音频信号,取样时间和采样率在音频流之间有所抵消。这里,我们采用一个新的采样率抵消模型,模拟由ADC晶体振荡器温度变化等造成的时间变化造成的时间变化采样频率,并提出一个估计算法,以结合声源位置的变化处理这一动态方面。此外,我们展示如何利用深神经网络估算麦克风与人喇叭之间的距离,以确定取样时间偏移。这样可以使音频流同步反映飞行的实际时间差异。