We address the detection of material defects, which are inside a layered material structure using compressive sensing based multiple-input and multiple-output (MIMO) wireless radar. Here, the strong clutter due to the reflection of the layered structure's surface often makes the detection of the defects challenging. Thus, sophisticated signal separation methods are required for improved defect detection. In many scenarios, the number of defects that we are interested in is limited and the signaling response of the layered structure can be modeled as a low-rank structure. Therefore, we propose joint rank and sparsity minimization for defect detection. In particular, we propose a non-convex approach based on the iteratively reweighted nuclear and $\ell_1-$norm (a double-reweighted approach) to obtain a higher accuracy compared to the conventional nuclear norm and $\ell_1-$norm minimization. To this end, an iterative algorithm is designed to estimate the low-rank and sparse contributions. Further, we propose deep learning to learn the parameters of the algorithm (i.e., algorithm unfolding) to improve the accuracy and the speed of convergence of the algorithm. Our numerical results show that the proposed approach outperforms the conventional approaches in terms of mean square errors of the recovered low-rank and sparse components and the speed of convergence.


翻译:我们利用压缩遥感、多投入和多输出(MIIMO)无线雷达来解决材料缺陷的探测问题,材料缺陷存在于一个层层材料结构中。这里,由于层结构表面的反射而出现强烈的杂乱,因此发现缺陷往往具有挑战性。因此,需要复杂的信号分离方法来改进缺陷的检测。在许多情形中,我们感兴趣的缺陷数量有限,层结构的信号反应可以以低层次结构为模型。因此,我们提议为发现缺陷而采用联合等级和宽度最小化。特别是,我们提议采用非康韦克斯法,以迭代再加权核和美元1-诺姆(一种双重加权方法)为基础,以获得比常规核规范更高的准确度和最小化的1美元。为此,我们设计了一个迭代算法,以估计低层次和稀少的贡献。此外,我们提议深入学习算法的参数(即演算法),以迭代法为基础,以迭代重核法为基础,以美元1美元-诺姆(一种双重加权方法)为基础,提高常规算法的精度和趋一致速度。我们提出的数字分析结果的恢复后,以平整成平整。

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
专知会员服务
45+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
已删除
将门创投
9+阅读 · 2018年12月19日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
已删除
将门创投
9+阅读 · 2018年12月19日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员