The underlying assumption of recent federated learning (FL) paradigms is that local models usually share the same network architecture as the global model, which becomes impractical for mobile and IoT devices with different setups of hardware and infrastructure. A scalable federated learning framework should address heterogeneous clients equipped with different computation and communication capabilities. To this end, this paper proposes FedHM, a novel federated model compression framework that distributes the heterogeneous low-rank models to clients and then aggregates them into a global full-rank model. Our solution enables the training of heterogeneous local models with varying computational complexities and aggregates a single global model. Furthermore, FedHM not only reduces the computational complexity of the device, but also reduces the communication cost by using low-rank models. Extensive experimental results demonstrate that our proposed \system outperforms the current pruning-based FL approaches in terms of test Top-1 accuracy (4.6% accuracy gain on average), with smaller model size (1.5x smaller on average) under various heterogeneous FL settings.
翻译:最近联合学习(FL)模式的基本假设是,当地模型通常与全球模型共享相同的网络结构,而对于具有不同硬件和基础设施设置的移动和IoT设备来说,这种网络结构变得不切实际。一个可扩缩的联邦学习框架应该针对具有不同计算和通信能力的多样化客户。为此,本文件提议FedHM,这是一个新颖的联邦模型压缩框架,向客户传播多种低级模型,然后将其汇总成一个全球全级模型。我们的解决办法使得能够培训具有不同计算复杂性的多元本地模型,并汇集一个单一的全球模型。此外,FedHM不仅降低了该设备的计算复杂性,而且还通过使用低级模型降低了通信成本。广泛的实验结果表明,从测试Top-1的精度(平均获得4.6%)来看,我们提议的系统超过了目前的基于速流法方法,在各种不同混合的FL环境中,模型规模较小(平均减少1.5x)。