Direct simulation of the von Neumann dynamics for a general (pure or mixed) quantum state can often be expensive. One prominent example is the real-time time-dependent density functional theory (rt-TDDFT), a widely used framework for the first principle description of many-electron dynamics in chemical and materials systems. Practical rt-TDDFT calculations often avoid the direct simulation of the von Neumann equation, and solve instead a set of Schr\"odinger equations, of which the dynamics is equivalent to that of the von Neumann equation. However, the time step size employed by the Schr\"odinger dynamics is often much smaller. In order to improve the time step size and the overall efficiency of the simulation, we generalize a recent work of the parallel transport (PT) dynamics for simulating pure states [An, Lin, Multiscale Model. Simul. 18, 612, 2020] to general quantum states. The PT dynamics provides the optimal gauge choice, and can employ a time step size comparable to that of the von Neumann dynamics. Going beyond the linear and near adiabatic regime in previous studies, we find that the error of the PT dynamics can be bounded by certain commutators between Hamiltonians, density matrices, and their derived quantities. Such a commutator structure is not present in the Schr\"odinger dynamics. We demonstrate that the parallel transport-implicit midpoint (PT-IM) method is a suitable method for simulating the PT dynamics, especially when the spectral radius of the Hamiltonian is large. The commutator structure of the error bound, and numerical results for model rt-TDDFT calculations in both linear and nonlinear regimes, confirm the advantage of the PT dynamics.
翻译:Von Neumann 直接模拟一般( 纯度或混合) 量子状态的动态通常会很昂贵。 突出的例子之一是实时的基于时间的密度功能性理论( rt- TDDFT), 这是一个广泛用于化学和材料系统中许多电子动态第一个原则描述的框架。 实际的 rt- TDFT 计算往往避免了 von Neumann 方程式的直接模拟, 并解决了一套Schr\" 量子方程式, 其动态相当于 von Neumann 方程式的动态。 然而, Schr\ “ od” 级的中值中位值动态所使用的时间步骤大小往往要小得多。 为了提高模拟中的时间级级和总体效率, 我们将平行运输动态的最近一项工作( PTT) 用于模拟纯度[ 的[an, Lin, 多级模型. Simul. 18, 612, 2020] 到一般量状态。 。 PT 的动态提供了最佳的测量选择, 可以使用与 von Eumann 的时序 的时阶值。 流流流流流流流流流值的时段。, 我们发现在以前的直线性模型中, 的模型中, 的模型中, 的数值的测值的轨值的测为不具有一种不测值。