In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold. Additionally, we also found positive results in solving the one-dimensional viscous Burger's equation where GPDM is adopted with a pseudo-spectral Galerkin framework to approximate nonlinear advection term.
翻译:在本文中,我们扩展了内核方法的类别,即所谓的扩散图(DMD)和鬼点扩散图(GPDM),以解决在无边界、无边界、无边界的未知的光滑元体上基于时间的反向扩散PDEP。核心思想是直接与当地一个整体操作者一道,将不同元体操作员的空间组成部分与本地整体操作员相近,并与标准隐含的时间差办法相结合。当元体有边界时,将GPDM方法的简化版本用于克服边界附近整体近似的偏差。在点云数据上将整体操作员的蒙特-卡洛分解,产生了一种对随机分布点的自然的无网状配方,即使该元体嵌入高维环境空间。我们在这里根据点云数据和边界类型的分布,将拟议的解决方案在适当的地表学上建立趋同点。我们提供了数字结果,用以验证涉及简单几何和未知的方位数的各种例子的趋同结果。此外,我们还发现在解决单维的布尔格-布尔格-基尔格-GMDMDMMMM的近称等像框架方面取得了积极的结果。