We study and propose schemes that map messages onto constant-weight codewords using variable-length prefixes. We provide polynomial-time computable formulas that estimate the average number of redundant bits incurred by our schemes. In addition to the exact formulas, we also perform an asymptotic analysis and demonstrate that our scheme uses $\frac12 \log n+O(1)$ redundant bits to encode messages into length-$n$ words with weight $(n/2)+{\sf q}$ for constant ${\sf q}$.
翻译:我们用不同长度的前缀来研究并提议将信息映射到常量编码词上的方案。 我们提供多元时间计算公式, 估计我们计划产生的重复比特的平均数量。 除了精确的公式外, 我们还进行无症状分析, 并证明我们的方案使用$\frac12\log n+O(1)$冗余比特将信息编码成长度为n美元, 重量为$( n/2) ⁇ sf q}$, 定值为$@sf q}。