We address the problem of estimating topological features from data in high dimensional Euclidean spaces under the manifold assumption. Our approach is based on the computation of persistent homology of the space of data points endowed with a sample metric known as Fermat distance. We prove that such metric space converges almost surely to the manifold itself endowed with an intrinsic metric that accounts for both the geometry of the manifold and the density that produces the sample. This fact implies the convergence of the associated persistence diagrams. The use of this intrinsic distance when computing persistent homology presents advantageous properties such as robustness to the presence of outliers in the input data and less sensitiveness to the particular embedding of the underlying manifold in the ambient space. We use these ideas to propose and implement a method for pattern recognition and anomaly detection in time series, which is evaluated in applications to real data.


翻译:我们根据多重假设,从高维欧几里德空间的数据中估算地貌特征的问题。我们的方法是基于计算具有称为Fermat距离的抽样测量标准的数据点空间的持久性同系物。我们证明,这种测量空间几乎肯定会与具有内含测量参数的多元体相融合,该参数既能计算出各种元体的几何特征,又能计算出生成样本的密度。这一事实意味着相关持久性图的趋同。在计算持久性同系物时使用这种内在距离具有有利的特性,例如输入数据中存在外部线的强健性,对环境空间中嵌入的深层元体的具体嵌入不那么敏感。我们利用这些想法提出并实施一种在时间序列中识别模式和发现异常现象的方法,该方法在应用到真实数据时得到评估。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月12日
Arxiv
0+阅读 · 2023年3月11日
Lifelong Learning Metrics
Arxiv
48+阅读 · 2022年1月20日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员