It has been demonstrated that prompt tuning is highly effective in efficiently eliciting knowledge from language models (LMs). However, the prompt tuning still lags behind fine-tuning, especially when the LMs are small. P-tuning v2 (Liu et al., 2021b) makes it comparable with finetuning by adding continuous prompts for every layer of the pre-trained model. However, prepending fixed soft prompts for all instances, regardless of their discrepancy, is doubtful. In particular, the inserted prompt position, length, and the representations of prompts for diversified instances through different tasks could all affect the prompt tuning performance. To fill this gap, we propose dynamic prompting (DP): the position, length, and prompt representation can all be dynamically optimized with respect to different tasks and instances. We conduct comprehensive experiments on the SuperGlue benchmark to validate our hypothesis and demonstrate substantial improvements. We also derive a unified framework for supporting our dynamic prompting strategy. In particular, we use a simple learning network and Gumble- Softmax for learning instance-dependent guidance. Experimental results show that simple instance-level position-aware soft prompts can improve the classification accuracy of up to 6 points on average on five datasets, reducing its gap with fine-tuning. Besides, we also prove its universal usefulness under full-data, few-shot, and multitask regimes. Combining them together can even further unleash the power of DP, narrowing the distance between finetuning.


翻译:事实证明,迅速调试在有效地从语言模型(LMs)获取知识方面非常有效。然而,迅速调试仍然落后于微调,特别是在LMs规模小的情况下。P调幅 v2(Liu等人,2021b)使调幅与微调相仿,在经过培训的模型的每一层都增加连续的提示。然而,预先为各种情况预先设定固定的软调试,无论其差异如何,都令人怀疑。特别是,插入的迅速位置、长度和通过不同任务对多种实例的提示都可能影响迅速调试业绩。为了填补这一差距,我们建议动态的提示(DP):对不同的任务和情况,可以动态地优化位置、长度和迅速的代表性。我们在SupGlue基准上进行全面试验,以验证我们的假设并展示重大改进。我们还为支持动态的快速战略制定了统一框架。特别是,我们使用简单的学习网络和Gumball-Softmax来学习依赖实例的指南。实验结果显示,即使是简单的试测级级一级立场、软调度的软调度数据,我们也可以在五度下改进其平均利用率的精确度数据。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
2+阅读 · 2023年4月25日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员