项目名称: 基于超快技术的石墨烯纳米带中载流子弛豫过程研究

项目编号: No.61306118

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 徐公杰

作者单位: 上海理工大学

项目金额: 25万元

中文摘要: 纳米尺度的石墨烯光子学器件是当前的研究热点之一。其中光生载流子的弛豫过程是决定纳米器件性能的重要因素。因此,全面了解石墨烯纳米结构中载流子的弛豫过程成为一个十分迫切的课题。本项目拟利用超快激光的时间分辨优势,通过对石墨烯纳米带中光生载流子的非平衡动力学研究,间接得到影响载流子弛豫的多种微观散射机制,为光子学纳米器件设计提供帮助。主要研究内容包括:(1)对石墨烯纳米带饱和吸收特性进行研究,间接得到载流子的带内及带间弛豫过程,讨论各种散射机制对弛豫过程的贡献,并着重分析带隙和边界散射的影响;(2)进一步对超快光致发光特性进行研究,分析量子限制产生的带隙对载流子产生、非平衡分布以及非线性宽带辐射的影响,从而加深对纳米尺度石墨烯发光性质的认识。项目的实施不仅能够扩展载流子弛豫的物理内涵,还能够为石墨烯光子学器件的设计与优化提供理论依据和技术指导。

中文关键词: 石墨烯纳米带;超快激光;弛豫;应变;吸附

英文摘要: Nanoscale graphene photonic devices is one of the current research hotspots. The relaxation of photocarriers plays a significant role in determining the performance of nanometer devices. Thus, it is an urgent need to find out the complete relaxation of carrier in graphene nanostructures. Taking the time-resolved advantage of the ultrafast laser, the carrier nonequilibrium dynamics in graphene nanoribbons (GNRs) will be investigated by analyzing the ultrafast optical properties, moreover the influence of microscopic scattering mechanisms on the carrier relaxation will also be obtained indiretly. The research results can help design the graphene photonics devices. The main research focuses are as follows: (1) the dependence of underlying microscopic scattering mechanism on the carrier intraband and interband relaxation will be discussed from saturable absorption of GNRs, especially the obvious energy gap and the edge scattering; (2) the impact of the energy gap induced by quantum restriction on the photocarrier generation, nonequilibrium distribution, and nonlinear broadband radiation will be investigated from the ultrafast photoluminescence of GNRs, and this can dig out the light emitting performance of nanoscale graphene. The executer of this program not only extends the underlying physics of carrier relaxation,

英文关键词: graphene nanoribbon;ultrafast laser;relaxation;strain;adsorption

成为VIP会员查看完整内容
0

相关内容

《美国陆军武器系统手册(2020-2021)》432页pdf
专知会员服务
120+阅读 · 2022年4月11日
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
31+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
16+阅读 · 2020年5月20日
Anomalous Instance Detection in Deep Learning: A Survey
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员