Machine learning (ML) techniques are being increasingly used in mobile networks for network planning, operation, management, optimisation and much more. These techniques are realised using a set of logical nodes known as ML pipeline. A single network operator might have thousands of such ML pipelines distributed across its network. These pipelines need to be managed and orchestrated across network domains. Thus it is essential to have autonomic multi-domain orchestration of ML pipelines in mobile networks. International Telecommunications Union (ITU) has provided an architectural framework for management and orchestration of ML pipelines in future networks. We extend this framework to enable autonomic orchestration of ML pipelines across multiple network domains. We present our system architecture and describe its application using a smart factory use case. Our work allows autonomic orchestration of multi-domain ML pipelines in a standardised, technology agnostic, privacy preserving fashion.


翻译:机械学习技术正越来越多地用于移动网络,用于网络规划、运行、管理、优化等。这些技术是通过一套逻辑节点,即ML管道实现的。单个网络运营商可能拥有数千个这种ML管道,分布在其网络中。这些管道需要跨网络域的管理和操作。因此,在移动网络中对ML管道进行多功能自动协调至关重要。国际电信联盟(国际电联)为未来网络中ML管道的管理和管弦提供了建筑框架。我们扩展了这一框架,使ML管道能够跨越多个网络域的自动管弦化。我们展示了我们的系统结构,并用一个智能工厂使用案例描述其应用。我们的工作使得多功能ML管道的自动管弦化,以一种标准化、技术敏感、隐私保护的方式进行。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
41+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员