Machine learning (ML) techniques are being increasingly used in mobile networks for network planning, operation, management, optimisation and much more. These techniques are realised using a set of logical nodes known as ML pipeline. A single network operator might have thousands of such ML pipelines distributed across its network. These pipelines need to be managed and orchestrated across network domains. Thus it is essential to have autonomic multi-domain orchestration of ML pipelines in mobile networks. International Telecommunications Union (ITU) has provided an architectural framework for management and orchestration of ML pipelines in future networks. We extend this framework to enable autonomic orchestration of ML pipelines across multiple network domains. We present our system architecture and describe its application using a smart factory use case. Our work allows autonomic orchestration of multi-domain ML pipelines in a standardised, technology agnostic, privacy preserving fashion.
翻译:机械学习技术正越来越多地用于移动网络,用于网络规划、运行、管理、优化等。这些技术是通过一套逻辑节点,即ML管道实现的。单个网络运营商可能拥有数千个这种ML管道,分布在其网络中。这些管道需要跨网络域的管理和操作。因此,在移动网络中对ML管道进行多功能自动协调至关重要。国际电信联盟(国际电联)为未来网络中ML管道的管理和管弦提供了建筑框架。我们扩展了这一框架,使ML管道能够跨越多个网络域的自动管弦化。我们展示了我们的系统结构,并用一个智能工厂使用案例描述其应用。我们的工作使得多功能ML管道的自动管弦化,以一种标准化、技术敏感、隐私保护的方式进行。