We revisit the $k$-Hessian eigenvalue problem on a smooth, bounded, $(k-1)$-convex domain in $\mathbb R^n$. First, we obtain a spectral characterization of the $k$-Hessian eigenvalue as the infimum of the first eigenvalues of linear second-order elliptic operators whose coefficients belong to the dual of the corresponding G\r{a}rding cone. Second, we introduce a non-degenerate inverse iterative scheme to solve the eigenvalue problem for the $k$-Hessian operator. We show that the scheme converges, with a rate, to the $k$-Hessian eigenvalue for all $k$. When $2\leq k\leq n$, we also prove a local $L^1$ convergence of the Hessian of solutions of the scheme. Hyperbolic polynomials play an important role in our analysis.


翻译:我们在一个平滑的、捆绑的、$(k-1)$-convex域域上,用$mathbb Rún美元,重新审视了美元-赫斯-赫斯-赫斯-海格值问题。首先,我们获得了一个光谱特征,将美元-赫斯-赫斯-赫斯-海格值作为线性第二级椭圆操作者第一个伊格值的最小值,其系数属于相应的G\r{a}rding conpee的双重值。第二,我们引入了一种非半衰化的反迭接机制,以解决赫斯-赫斯操作者的乙基值问题。我们显示,以一个速率将该计划与所有美元-赫斯-赫斯-赫斯-伊格值相趋同。当2美元\leq kleqn美元时,我们也证明Hesian的解决方案的当地合产值为1美元。超双曲曲多球在我们的分析中发挥了重要作用。

0
下载
关闭预览

相关内容

【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
已删除
将门创投
7+阅读 · 2018年11月5日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年2月12日
Arxiv
0+阅读 · 2021年2月12日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
已删除
将门创投
7+阅读 · 2018年11月5日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员