We present a perturbed subspace iteration algorithm to approximate the lowermost eigenvalue cluster of an elliptic eigenvalue problem. As a prototype, we consider the Laplace eigenvalue problem posed in a polygonal domain. The algorithm is motivated by the analysis of inexact (perturbed) inverse iteration algorithms in numerical linear algebra. We couple the perturbed inverse iteration approach with mesh refinement strategy based on residual estimators. We demonstrate our approach on model problems in two and three dimensions.
翻译:我们提出一个扰动的子空间迭代算法, 以近似于椭圆结构值问题中最下层的顶层电子值组。 作为原型, 我们考虑在多边形域中出现的Laplace电子值问题。 该算法的动因是对数字线性代数中的不精确( 透过) 反迭代算法的分析。 我们将扰动循环法与基于剩余估量器的网状精细战略结合起来。 我们用两个和三个维度来演示我们对模型问题的方法 。