It is common practice to reuse models initially trained on different data to increase downstream task performance. Especially in the computer vision domain, ImageNet-pretrained weights have been successfully used for various tasks. In this work, we investigate the impact of transfer learning for segmentation problems, being pixel-wise classification problems that can be tackled with encoder-decoder architectures. We find that transfer learning the decoder does not help downstream segmentation tasks, while transfer learning the encoder is truly beneficial. We demonstrate that pretrained weights for a decoder may yield faster convergence, but they do not improve the overall model performance as one can obtain equivalent results with randomly initialized decoders. However, we show that it is more effective to reuse encoder weights trained on a segmentation or reconstruction task than reusing encoder weights trained on classification tasks. This finding implicates that using ImageNet-pretrained encoders for downstream segmentation problems is suboptimal. We also propose a contrastive self-supervised approach with multiple self-reconstruction tasks, which provides encoders that are suitable for transfer learning in segmentation problems in the absence of segmentation labels.
翻译:通常的做法是重新使用最初经过不同数据培训的模型,以提高下游任务性能。 特别是在计算机视野域中, 图像网络预设的重量已被成功用于各种任务。 在这项工作中, 我们调查了因分解问题而转移学习的影响, 这是一种像素的分类问题, 可以通过编码器脱coder 结构加以解决。 我们发现, 转移学习解码器无助于下游分解任务, 而转移学习编码器确实是有益的。 我们证明, 解码器的预培训权重可能会更快地实现趋同, 但是它们并没有改进整个模型性能, 因为人们可以通过随机初始的解码器获得等效的结果。 然而, 我们显示, 重新利用经过分解或重建任务培训的编码器重量比重新使用经过分类任务培训的编码器重更有效。 我们发现, 在下游分解问题时, 使用经过图像网络培训的编码器进行分解处理的编码器是不太理想的。 我们还建议一种与多种自重构任务相对的自我强化方法, 提供在没有分解标签的情况下, 适合在分解过程中转移分解问题中学习的编码器。