We present EdiT5 - a novel semi-autoregressive text-editing approach designed to combine the strengths of non-autoregressive text-editing and autoregressive decoding. EdiT5 is faster at inference times than conventional sequence-to-sequence (seq2seq) models, while being capable of modeling flexible input-output transformations. This is achieved by decomposing the generation process into three sub-tasks: (1) tagging to decide on the subset of input tokens to be preserved in the output, (2) re-ordering to define their order in the output text, and (3) insertion to infill the missing tokens that are not present in the input. The tagging and re-ordering steps, which are responsible for generating the largest portion of the output, are non-autoregressive, while the insertion uses an autoregressive decoder. Depending on the task, EdiT5 requires significantly fewer autoregressive steps demonstrating speedups of up to 25x when compared to classic seq2seq models. Quality-wise, EdiT5 is initialized with a pre-trained T5 checkpoint yielding comparable performance to T5 in high-resource settings and clearly outperforms it on low-resource settings when evaluated on three NLG tasks: Sentence Fusion, Grammatical Error Correction, and Decontextualization.
翻译:我们提出了EdiT5 - 一种新型的半递增文本编辑方法,旨在将非递减文本编辑和自动递减解码的优点结合起来。 EdiT5 的推论时间比常规序列到序列(seq2seq) 模型的推论时间要快,同时能够模拟灵活的输入-输出转换。这是通过将生成过程分解成三个子任务来实现的:(1) 标记以决定产出中要保存的输入符号子集,(2) 重新排序以界定其输出文本中的顺序,(3) 插入以填充输入中未显示的缺失符号。 标记和重新排序步骤比常规序列到序列(seq2seq2seq) 模型要快得多, 而插入则使用自动递增脱缩调。 根据任务, EdiT5 需要大大减少显示25x的递增速度的自动递增步骤, 与典型的后置模型相比: Tlegal-qual-rial-legredual develop train train a firent train train deview: Tal-deal- legroisal deview sill rial 3 lagrestiewd MA 后验造型前, 后, 后, 5 后, MA MA 3 MA 后演化后演化后演化后演化后演化后演化到前 后演制前 后程前 后演制前 后程前 后程前 后演制前 后演制前 后演制制后 后, 后演制制制制制性性性 后 后 后 后 后 后 后 后 后 后 后 后 后 后程前 后程前 后 后程前 后 后 后 后 后 后 后 后程前 后程后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后 后