In this paper, the problem of spectral-efficient communication and computation resource allocation for distributed reconfigurable intelligent surfaces (RISs) assisted probabilistic semantic communication (PSC) in industrial Internet-of-Things (IIoT) is investigated. In the considered model, multiple RISs are deployed to serve multiple users, while PSC adopts compute-then-transmit protocol to reduce the transmission data size. To support high-rate transmission, the semantic compression ratio, transmit power allocation, and distributed RISs deployment must be jointly considered. This joint communication and computation problem is formulated as an optimization problem whose goal is to maximize the sum semantic-aware transmission rate of the system under total transmit power, phase shift, RIS-user association, and semantic compression ratio constraints. To solve this problem, a many-to-many matching scheme is proposed to solve the RIS-user association subproblem, the semantic compression ratio subproblem is addressed following greedy policy, while the phase shift of RIS can be optimized using the tensor based beamforming. Numerical results verify the superiority of the proposed algorithm.
翻译:暂无翻译