Federated Learning (FL) is an emerging paradigm through which decentralized devices can collaboratively train a common model. However, a serious concern is the leakage of privacy from exchanged gradient information between clients and the parameter server (PS) in FL. To protect gradient information, clients can adopt differential privacy (DP) to add additional noises and distort original gradients before they are uploaded to the PS. Nevertheless, the model accuracy will be significantly impaired by DP noises, making DP impracticable in real systems. In this work, we propose a novel Noise Information Secretly Sharing (NISS) algorithm to alleviate the disturbance of DP noises by sharing negated noises among clients. We theoretically prove that: 1) If clients are trustworthy, DP noises can be perfectly offset on the PS; 2) Clients can easily distort negated DP noises to protect themselves in case that other clients are not totally trustworthy, though the cost lowers model accuracy. NISS is particularly applicable for FL across multiple IoT (Internet of Things) systems, in which all IoT devices need to collaboratively train a model. To verify the effectiveness and the superiority of the NISS algorithm, we conduct experiments with the MNIST and CIFAR-10 datasets. The experiment results verify our analysis and demonstrate that NISS can improve model accuracy by 21% on average and obtain better privacy protection if clients are trustworthy.


翻译:联邦学习(FL)是一个新兴范例,分散式设备可以通过这种模式合作培训一个共同模式。然而,一个严重关切的问题是客户与FL的参数服务器(PS)之间交换的梯度信息泄露隐私。为了保护梯度信息,客户可以采用差异性隐私(DP)在上传到PS之前添加更多噪音,扭曲原始梯度。然而,模型准确性将受到DP噪音的极大损害,使DP在现实系统中不切实际,使DP在现实系统中不切实际。在这项工作中,我们提议采用新的新颖的噪音保密信息分享算法,通过在客户之间分享否定的噪音来减轻DP噪音的干扰。我们理论上证明:(1) 如果客户可信,DP噪音可以在PS上完全抵消;(2) 客户可以很容易地扭曲否定的DP噪音,以便在其他客户不完全可靠的情况下保护自己。 国家空间服务系统特别适用于多种IoT(Th Intermal)系统FL,在这个系统中,所有IOT设备都需要合作培训一个模型。为了核实国家空间服务局的效能和优越性,我们可以通过21国际空间信息系统的平均数来进行更好的实验来验证。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员