Thanks to the combination of state-of-the-art accelerators and highly optimized open software frameworks, there has been tremendous progress in the performance of deep neural networks. While these developments have been responsible for many breakthroughs, progress towards solving large-scale problems, such as video encoding and semantic segmentation in 3D, is hampered because access to on-premise memory is often limited. Instead of relying on (optimal) checkpointing or invertibility of the network layers -- to recover the activations during backpropagation -- we propose to approximate the gradient of convolutional layers in neural networks with a multi-channel randomized trace estimation technique. Compared to other methods, this approach is simple, amenable to analyses, and leads to a greatly reduced memory footprint. Even though the randomized trace estimation introduces stochasticity during training, we argue that this is of little consequence as long as the induced errors are of the same order as errors in the gradient due to the use of stochastic gradient descent. We discuss the performance of networks trained with stochastic backpropagation and how the error can be controlled while maximizing memory usage and minimizing computational overhead.


翻译:由于先进的加速器和高度优化的开放软件框架的结合,在深神经网络的运行方面取得了巨大进展。虽然这些发展是许多突破的原因,但解决大规模问题的进展,如3D中的视频编码和语义分解,却受到阻碍,因为获取预感记忆的机会往往有限。我们提议在后向回向回向中恢复电动 -- -- 我们提议以多通道随机跟踪估计技术来接近神经网络中螺旋层的梯度。与其他方法相比,这一方法很简单,易于分析,并导致记忆足迹大为减少。即使随机跟踪估计在培训期间引入了偏差,但这并不是什么结果,只要诱发的误差与使用随机梯度梯度梯度梯度的误差相同。我们讨论经过多通道随机测量的轨迹测技术的网络的性能,以及如何在最大程度使用记忆力和高层计算时控制误差。

0
下载
关闭预览

相关内容

最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
“CVPR 2020 接受论文列表 1470篇论文都在这了
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月12日
Learning Memory-guided Normality for Anomaly Detection
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
“CVPR 2020 接受论文列表 1470篇论文都在这了
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员