Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database comprised of $K$ files (submodels) that are stored across $N$ distributed servers according to an $X$-secure threshold secret sharing scheme. One after another, various users wish to retrieve their desired file, locally process the information and then update the file in the distributed database while keeping the identity of their desired file private from any set of up to $T$ colluding servers. The availability of servers changes over time, so elastic dropout resilience is required. The main contribution of this work is an adaptive scheme, called ACSA-RW, that takes advantage of all currently available servers to reduce its communication costs, fully updates the database after each write operation even though the database is only partially accessible due to server dropouts, and ensures a memoryless operation of the network in the sense that the storage structure is preserved and future users may remain oblivious of the past history of server dropouts. The ACSA-RW construction builds upon CSA codes that were originally introduced for XSTPIR and have been shown to be natural solutions for secure distributed matrix multiplication problems. ACSA-RW achieves the desired private read and write functionality with elastic dropout resilience, matches the best results for private-read from PIR literature, improves significantly upon available baselines for private-write, reveals a striking symmetry between upload and download costs, and exploits redundant storage dimensions to accommodate arbitrary read and write dropout servers up to certain threshold values. It also answers in the affirmative an open question by Kairouz et al. by exploiting synergistic gains from the joint design of private read and write operations.


翻译:这项工作探索了私人阅读和写入数据库的根本问题,数据库由K美元文件(子模型)组成,根据X美元安全的门槛秘密共享机制,存储在美元安全门槛共享机制下,以美元存储服务器,储存在以美元为基础,储存在以美元为基模模模外学习,根据最近对Federererate 下方学习的兴趣,这项工作探索了私人阅读和撰写到一个数据库的根本问题,该数据库由以美元为单位,根据最近对Federerererd 的Federeral学习,根据最近对Federereration Redial Redial Redial Regresm的关心,从中私下读取和写成,然后更新分布在分布在分布在分布在分配数据库中的文件,同时保留存储结构,使未来用户仍对以往任何安装至T$T$的公开下载服务器退级历史保持不忘感,因此需要有弹性的退职复原力。这项工作的主要贡献是适应性方案,称为ACCA-RA-RRM的主要贡献是利用所有现有服务器,以降低通信成本的方式充分利用所有现有服务器,全面更新数据库更新数据库,全面更新数据库更新数据库数据库数据库数据库数据库,即使数据库仅用于降低成本,即使数据库只只只只只只只只访问,确保数据库访问检索更新数据库访问检索更新数据库,确保网络运行、私修读、私读、私读、私修修修修修修修修、私修、私修、私修、私修、私修、私修、私修、私修、私修、私修、私修、私修、私修、私修法、私修、私修、私修、私修、私修、私修、私修、私修、私修、私修、私修、私修、私修、私修修、私修、私修修、私修、私修、私修、私修的、私修、私修、私修、私修、私修、私修、私修、私修法、私修的、私修、私修的、私修、私修、私修、私修、私修、私修、私修、私修的、私修、私修的、私修、私修、私修、私修法、私修的、私修、私修

0
下载
关闭预览

相关内容

【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
166+阅读 · 2020年4月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月13日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关VIP内容
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
166+阅读 · 2020年4月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员