In a previous work, we developed an algorithm for the computation of incomplete Bessel functions, which pose as a numerical challenge, based on the $G_{n}^{(1)}$ transformation and Slevinsky-Safouhi formula for differentiation. In the present contribution, we improve this existing algorithm for incomplete Bessel functions by developing a recurrence relation for the numerator sequence and the denominator sequence whose ratio forms the sequence of approximations. By finding this recurrence relation, we reduce the complexity from ${\cal O}(n^4)$ to ${\cal O}(n)$. We plot relative error showing that the algorithm is capable of extremely high accuracy for incomplete Bessel functions.
翻译:在以前的一项工作中,我们开发了计算不完整贝塞尔函数的算法,这是一个数字挑战,它基于$G ⁇ n ⁇ (1)}$转换和Slevinsky-Safouhi的差别化公式。在目前的贡献中,我们改进了现有的不完全贝塞尔函数的算法,为分子序列及其比率构成近似序列的分母序列发展了复现关系。通过发现这种重复关系,我们将复杂性从$_cal O}(n ⁇ 4)美元降低到$_cal O}(n)美元。我们绘制了相对错误,显示算法对于不完整贝塞尔函数具有极高的精确性。