Accurate and automated super-resolution image synthesis is highly desired since it has the great potential to circumvent the need for acquiring high-cost medical scans and a time-consuming preprocessing pipeline of neuroimaging data. However, existing deep learning frameworks are solely designed to predict high-resolution (HR) image from a low-resolution (LR) one, which limits their generalization ability to brain graphs (i.e., connectomes). A small body of works has focused on superresolving brain graphs where the goal is to predict a HR graph from a single LR graph. Although promising, existing works mainly focus on superresolving graphs belonging to the same domain (e.g., functional), overlooking the domain fracture existing between multimodal brain data distributions (e.g., morphological and structural). To this aim, we propose a novel inter-domain adaptation framework namely, Learn to SuperResolve Brain Graphs with Knowledge Distillation Network (L2S-KDnet), which adopts a teacher-student paradigm to superresolve brain graphs. Our teacher network is a graph encoder-decoder that firstly learns the LR brain graph embeddings, and secondly learns how to align the resulting latent representations to the HR ground truth data distribution using an adversarial regularization. Ultimately, it decodes the HR graphs from the aligned embeddings. Next, our student network learns the knowledge of the aligned brain graphs as well as the topological structure of the predicted HR graphs transferred from the teacher. We further leverage the decoder of the teacher to optimize the student network. L2S-KDnet presents the first TS architecture tailored for brain graph super-resolution synthesis that is based on inter-domain alignment. Our experimental results demonstrate substantial performance gains over benchmark methods.
翻译:精度和自动化超分辨率图像合成非常理想,因为它极有可能绕过获取高成本医学扫描和耗时的神经成像数据预处理前管道的需求。 但是,现有的深层次学习框架的设计仅仅是为了从低分辨率(LR)中预测高分辨率(HR)图像,从而限制其对大脑图(即连接体)的概括性能力。一小块工程侧重于超解脑图,其目标是从单一LR图中预测一个HR的图形。尽管目前的工作主要侧重于属于同一域(如,功能)的超解图,而忽略了多式大脑数据分布(如,形态学和结构)之间存在的领域骨折。为此,我们提出了一个新的内部适应框架,即:学习超分辨率脑图和知识蒸馏网络(L2S-KDnet),该图在师资与师资阵列的图表中采用了一种直线式的模型,我们教师网络的直径直对称模型,从而从学生的直径对齐的直径对齐的直径对齐的直径图结构,从而学习了我们的直径直径直对立的直径方的直方的图像。我们教师网络的师网络的直径对正的直对准的直对直图的直图的直图的直向向直对流的对流的对流的对流的对流的对流的对流的对立式的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流的对流,对流的对路的对路的对路的对路的对路的对路的对路的对路图。。。。。。。,我们的对流的对流的对流的对流的对流的对流的对流的对流的对流的对路的对路的对路的对路的对路的对流的对路的对路的对路的对路的对路