To ease the burden of labeling, unsupervised domain adaptation (UDA) aims to transfer knowledge in previous and related labeled datasets (sources) to a new unlabeled dataset (target). Despite impressive progress, prior methods always need to access the raw source data and develop data-dependent alignment approaches to recognize the target samples in a transductive learning manner, which may raise privacy concerns from source individuals. Several recent studies resort to an alternative solution by exploiting the well-trained white-box model from the source domain, yet, it may still leak the raw data through generative adversarial learning. This paper studies a practical and interesting setting for UDA, where only black-box source models (i.e., only network predictions are available) are provided during adaptation in the target domain. To solve this problem, we propose a new two-step knowledge adaptation framework called DIstill and fine-tuNE (DINE). Taking into consideration the target data structure, DINE first distills the knowledge from the source predictor to a customized target model, then fine-tunes the distilled model to further fit the target domain. Besides, neural networks are not required to be identical across domains in DINE, even allowing effective adaptation on a low-resource device. Empirical results on three UDA scenarios (i.e., single-source, multi-source, and partial-set) confirm that DINE achieves highly competitive performance compared to state-of-the-art data-dependent approaches. Code is available at \url{https://github.com/tim-learn/DINE/}.


翻译:为了减轻标签负担,未经监督的域适应(UDA)旨在将先前及相关标签的数据集(源)的知识转移到一个新的未贴标签的数据集(目标),尽管取得了令人印象深刻的进展,但先前的方法总是需要获取原始源数据并制定基于数据的统一方法,以便以传输学习的方式识别目标样本,这可能引起源个人对隐私的关切。最近的一些研究利用了源域经过良好训练的白箱模型来寻找替代解决方案,然而,它可能仍然通过基因化对抗性学习泄露原始数据。本文研究的是UDA的实用和有趣的设置,在目标域的适应期间,仅提供黑箱源模型(即仅提供网络预测),在目标区域,为了解决这一问题,我们提出了一个新的两步知识适应框架,称为“Dstill and foly-tune(DINENE)。考虑到目标数据结构,DINE首先将源预测或定制的目标模型的知识从源源的竞争力数据稳定到定制的目标模型,然后对部分模型进行微调,甚至将目标域域域内的部分数据规则(即仅提供网络的网络上的相同数据调整)。

4
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年7月15日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Arxiv
13+阅读 · 2021年10月9日
Arxiv
10+阅读 · 2021年3月30日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年7月15日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
13+阅读 · 2021年10月9日
Arxiv
10+阅读 · 2021年3月30日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员