A standard informal method for analyzing the asymptotic complexity of a program is to extract a recurrence that describes its cost in terms of the size of its input, and then to compute a closed-form upper bound on that recurrence. We give a formal account of that method for functional programs in a higher-order language with let-polymorphism. The method consists of two phases. In the first phase, a monadic translation is performed to extract a cost-annotated version of the original program. In the second phase, the extracted program is interpreted in a model. The key feature of this second phase is that different models describe different notions of size. This plays out in several ways. For example, when analyzing functions that take arguments of inductive types, different notions of size may be appropriate depending on the analysis. When analyzing polymorphic functions, our approach shows that one can formally describe the notion of size of an argument in terms of the data that is common to the notions of size for each type instance of the domain type. We give several examples of different models that formally justify various informal cost analyses to show the applicability of our approach.


翻译:用于分析一个程序无症状复杂性的标准非正式方法是,从输入量大小的角度,提取一个描述其成本的重现,然后根据该重现计算一个封闭式的上限。我们用一个高阶语言,用顺向多形态主义的方式,正式描述该功能程序的方法。该方法由两个阶段组成。在第一阶段,进行一个monadic翻译,以提取原始程序的成本附加说明版本。在第二阶段,提取的程序在一个模型中解释。第二阶段的关键特征是不同的模型描述不同的规模概念。这以几种方式出现。例如,在分析从缩入类型的角度分析功能时,不同规模的概念可能适合分析。在分析多形态函数时,我们的方法表明,可以正式描述与每个类型域类型大小概念共同的数据的大小概念。我们举出了不同模型的几种例子,正式证明各种非正式成本分析可以显示我们方法的可适用性。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月7日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
17+阅读 · 2019年3月28日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员