Convolutional neural network (CNN) inference using fully homomorphic encryption (FHE) is a promising private inference (PI) solution due to the capability of FHE that enables offloading the whole computation process to the server while protecting the privacy of sensitive user data. However, prior FHEbased CNN (HCNN) implementations are far from being practical due to the high computational and memory overheads of FHE. To overcome this limitation, we present HyPHEN, a deep HCNN construction that features an efficient FHE convolution algorithm, data packing methods (hybrid packing and image slicing), and FHE-specific optimizations. Such enhancements enable HyPHEN to substantially reduce the memory footprint and the number of expensive homomorphic operations, such as ciphertext rotation and bootstrapping. As a result, HyPHEN brings the latency of HCNN CIFAR-10 inference down to a practical level at 1.40s (ResNet20) and demonstrates HCNN ImageNet inference for the first time at 16.87s (ResNet18).
翻译:使用完全同质加密法的进化神经网络(CNN)推论是一个很有希望的私人推论(PI)解决方案,因为FHE有能力将整个计算过程从服务器上卸下,同时保护敏感用户数据的隐私,然而,由于FHE的计算和记忆管理费高,在FHE的先前有CNN WN(HNN)执行远非实用性。为了克服这一限制,我们介绍了Hyphen,这是HyPHN的深层构造,其特点是高效的FHE演算法、数据包装方法(合用包装和图像复制)和FEHE特定的优化。这种增强使HYPHEN能够大量减少记忆足迹和昂贵的同质操作数量,例如密码旋转和制鞋。结果,HYPHEN将HCNN CIFAR-10的拉长度降至1.40年代的实际水平(ResNet20),并展示HCN图像网络首次在16.87年代(ResNet18)。