Economists frequently estimate average treatment effects (ATEs) for transformations of the outcome that are well-defined at zero but behave like $\log(y)$ when $y$ is large (e.g., $\log(1+y)$, $\mathrm{arcsinh}(y)$). We show that these ATEs depend arbitrarily on the units of the outcome, and thus should not be interpreted as percentage effects. In line with this result, we find that estimated treatment effects for $\mathrm{arcsinh}$-transformed outcomes published in the American Economic Review change substantially when we multiply the units of the outcome by 100 (e.g., convert dollars to cents). To help delineate alternative approaches, we prove that when the outcome can equal zero, there is no average treatment effect of the form $E_P[g(Y(1),Y(0))]$ that is point-identified and unit-invariant. We conclude by discussing sensible alternative target parameters for settings with zero-valued outcomes that relax at least one of these requirements.
翻译:经济学家经常估计对结果进行变换后的平均处理效应(ATEs),这些变换仅在零时被定义,但在y很大时像log(y)那样(例如,log(1 + y),arcsinh(y))。我们证明这些ATEs任意地依赖于结果单位,因此不应解释为百分比效应。与这一结果相一致,我们发现在美国经济评论(American Economic Review)上公布的针对arcsinh变换结果的估计处理效应会在我们将结果单位乘以100(例如,将美元转换为美分)时发生重大变化。为了帮助界定替代方法,我们证明,当结果可以等于零时,不存在一个形如$E_P[g(Y(1),Y(0))]$的平均处理效应是点识别和单位不变的。我们最后讨论了有零值结果的设置的明智的替代目标参数,这些替代目标参数至少放松了这些要求之一。