We introduce a Markov Chain Monte Carlo (MCMC) algorithm to generate samples from probability distributions supported on a $d$-dimensional lattice $\Lambda = \mathbf{B}\mathbb{Z}^d$, where $\mathbf{B}$ is a full-rank matrix. Specifically, we consider lattice distributions $P_\Lambda$ in which the probability at a lattice point is proportional to a given probability density function, $f$, evaluated at that point. To generate samples from $P_\Lambda$, it suffices to draw samples from a pull-back measure $P_{\mathbb{Z}^d}$ defined on the integer lattice. The probability of an integer lattice point under $P_{\mathbb{Z}^d}$ is proportional to the density function $\pi = |\det(\mathbf{B})|f\circ \mathbf{B}$. The algorithm we present in this paper for sampling from $P_{\mathbb{Z}^d}$ is based on the Metropolis-Hastings framework. In particular, we use $\pi$ as the proposal distribution and calculate the Metropolis-Hastings acceptance ratio for a well-chosen target distribution. We can use any method, denoted by ALG, that ideally draws samples from the probability density $\pi$, to generate a proposed state. The target distribution is a piecewise sigmoidal distribution, chosen such that the coordinate-wise rounding of a sample drawn from the target distribution gives a sample from $P_{\mathbb{Z}^d}$. When ALG is ideal, we show that our algorithm is uniformly ergodic if $-\log(\pi)$ satisfies a gradient Lipschitz condition.
翻译:我们引入了 Markov 链条 Monte Carlo (MCMC) 算法, 从以美元维度 $\ Lambda =\ mathbf{B\\\mathb{B}d$支持的概率分布中生成样本。 $\ mathbf{B} 美元是全端矩阵。 具体地说, 我们考虑 lattice 分布 $P ⁇ Lambda 值与给定的概率密度函数成正比 $f$ f$, 在那个点进行评估。 要从 $P ⁇ Lambda 中生成样本, 它就足够从整面的调试量 $P\ mathbd} 中提取样本。 在 $P\\ mathb{b{B} 中, 整面的样本分布概率与密度函数 $píb{B} / fcicrcrcr\ f} 。 任何在本文中从 $\\\\\\\\\\\\\ plexlex_ dlational_ dal_ dalblation a lical_ dest a a res a res a lading a pass a pass res lading a pass res a res a provition a proview a proview a proup the proview a a res a a pre laction a res resm resm laction a a a a a a a a a lading the provitional_ a lad a pregmental_ a preal_ a a a a a lad the a lad the a a a a a a preald the preal_ a a a a a a a a a a a a a a a a p lad the ps a a a a a a a p subal sub sub sub sub sub sub s a a a a a a a a a a a a a a a a a pal_ a a a a a a a a a a a lab s a p s a sub s a a a a a a sub