Training deep-learning-based vision systems requires the manual annotation of a significant amount of data to optimize several parameters of the deep convolutional neural networks. Such manual annotation is highly time-consuming and labor-intensive. To reduce this burden, a previous study presented a fully automated annotation approach that does not require any manual intervention. The proposed method associates a visual marker with an object and captures it in the same image. However, because the previous method relied on moving the object within the capturing range using a fixed-point camera, the collected image dataset was limited in terms of capturing viewpoints. To overcome this limitation, this study presents a mobile application-based free-viewpoint image-capturing method. With the proposed application, users can collect multi-view image datasets automatically that are annotated with bounding boxes by moving the camera. However, capturing images through human involvement is laborious and monotonous. Therefore, we propose gamified application features to track the progress of the collection status. Our experiments demonstrated that using the gamified mobile application for bounding box annotation, with visible collection progress status, can motivate users to collect multi-view object image datasets with less mental workload and time pressure in an enjoyable manner, leading to increased engagement.
翻译:训练基于深度卷积神经网络的视觉系统需要手动注释大量数据来优化几个参数。这种手动注释耗时且劳力密集。为减少这种负担,先前的研究提出了一种完全自动化的注释方法,不需要任何手动干预。所提出的方法将可视标记与对象关联,并在同一图像中捕获它。然而,由于先前方法依赖于使用固定点相机在捕获范围内移动对象,所以所收集的图像数据集在捕捉视角方面受到限制。为了克服这个限制,本研究提出了一种基于移动应用程序的自由视点图像捕捉方法。使用所提出的应用程序,用户可以通过移动相机自动收集带有边界框的多视图图像数据集。然而,通过人为干预捕获图像是费力且单调的。因此,我们提出了游戏化的应用程序功能来跟踪收集状态的进度。我们的实验表明,使用具有可见收集进度状态的边界框注释的游戏化移动应用程序可以激励用户以更轻松、更快乐的方式收集多视角对象图像数据集,减少心理负担和时间压力,从而提高积极性。