Learning to segment images purely by relying on the image-text alignment from web data can lead to sub-optimal performance due to noise in the data. The noise comes from the samples where the associated text does not correlate with the image's visual content. Instead of purely relying on the alignment from the noisy data, this paper proposes a novel loss function termed SimCon, which accounts for intra-modal similarities to determine the appropriate set of positive samples to align. Further, using multiple views of the image (created synthetically) for training and combining the SimCon loss with it makes the training more robust. This version of the loss is termed MV-SimCon. The empirical results demonstrate that using the proposed loss function leads to consistent improvements on zero-shot, text supervised semantic segmentation and outperforms state-of-the-art by $+3.0\%$, $+3.3\%$ and $+6.9\%$ on PASCAL VOC, PASCAL Context and MSCOCO, respectively. With test time augmentations, we set a new record by improving these results further to $58.7\%$, $26.6\%$, and $33.3\%$ on PASCAL VOC, PASCAL Context, and MSCOCO, respectively. In addition, using the proposed loss function leads to robust training and faster convergence.


翻译:仅依靠网络数据中的图像文本校正,即可学习部分图像,但仅依靠网络数据中的图像文本校正,可以导致由于数据中的噪音而产生亚最佳性能。噪音来自相关文本与图像的视觉内容无关的样本。本文不完全依靠音响数据的校正,而提议了一个新的损失函数SimCon,它考虑到各种模式内部的相似之处,以确定适当的正样组,以便加以校正。此外,在培训中使用对图像(合成生成的)的多重观点,并将SimCon损失与它合并,使培训更加有力。这种损失的版本称为MV-SimCon。经验结果显示,使用拟议的损失函数导致在零发、文本监督的语义分解和超常规状态方面不断改进,其价值为3.0美元、3.3美元和6.9美元,分别用于PASAL VOC、PASAL背景和MOCA-CA-CASA-CA-CA-CA、快速整合、快速整合、快速和快速升级的PASA-L-CA-CA-CA-CA-CA-CA-CA-CAL CO-CA-CA-CA-CASAL-CA-CA-CAR-L-L-CAR-L-CON-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-C-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员