We consider the situation where multiple transportation service providers cooperate to offer an integrated multi-modal platform to enhance the convenience to the passengers through ease in multi-modal journey planning, payment, and first and last mile connectivity. This market structure allows the multi-modal platform to coordinate profits across modes and also provide incentives to the passengers. Accordingly, in this paper, we use cooperative game theory coupled with the hyperpath-based stochastic user equilibrium framework to study such a market. We assume that the platform sets incentives (price discount or excess charge on passengers) along every edge in the transportation network. We derive the continuity and monotonicity properties of the equilibrium flow with respect to the incentives along every edge. The optimal incentives that maximize the profit of the platform are obtained through a two time-scale stochastic approximation algorithm. We use the asymmetric Nash bargaining solution to design a fair profit sharing scheme among the service providers. We show that the profit for each service provider increases after cooperation on such a platform. Finally, we complement the theoretical results through two numerical simulations.
翻译:我们考虑了多种运输服务提供商合作提供综合多模式平台,通过便利多模式行程规划、支付和第一及最后一英里连通性,为乘客提供方便,以提高方便性的情况。这一市场结构使多模式平台能够协调不同模式的利润,并为乘客提供奖励。因此,我们在本文件中利用合作游戏理论以及基于超偏执的超常随机用户平衡框架来研究这样一个市场。我们假设该平台在运输网络的每个边缘设置了奖励措施(对乘客的折扣或超额收费)。我们从每种边缘的奖励措施中获取平衡流动的连续性和单一性特性。通过两种时间尺度的随机近似算法获得最大限度地增加平台利润的最佳奖励。我们利用对称式纳什谈判解决方案设计服务提供者之间公平分享利润的计划。我们展示了每个服务提供者在这种平台上的合作之后的利润增加。最后,我们通过两个数字模拟来补充理论结果。