Modern machine learning models use an ever-increasing number of parameters to train (175 billion parameters for GPT-3) with large datasets to obtain better performance. Bigger is better has been the norm. Optical computing has been reawakened as a potential solution to large-scale computing through optical accelerators that carry out linear operations while reducing electrical power. However, to achieve efficient computing with light, creating and controlling nonlinearity optically rather than electronically remains a challenge. This study explores a reservoir computing (RC) approach whereby a 14 mm long few-mode waveguide in LiNbO3 on insulator is used as a complex nonlinear optical processor. A dataset is encoded digitally on the spectrum of a femtosecond pulse which is then launched in the waveguide. The output spectrum depends nonlinearly on the input. We experimentally show that a simple digital linear classifier with 784 parameters using the output spectrum from the waveguide as input increased the classification accuracy of several databases compared to non-transformed data, approximately 10$\%$. In comparison, a deep digital neural network (NN) with 40000 parameters was necessary to achieve the same accuracy. Reducing the number of parameters by a factor of $\sim$50 illustrates that a compact optical RC approach can perform on par with a deep digital NN.
翻译:现代机器学习模型使用越来越多的参数来培训(GPT-3)的1750亿参数,这些参数将拥有庞大的数据集,以获得更好的性能。大人物更是常态。光学计算被重新唤醒,成为通过光加速器进行线性操作,同时减少电力的光加速器进行大规模计算的潜在解决方案。然而,实现光效率计算,光学创建和控制非线性光学而不是电子化仍然是一项挑战。这项研究探索储油层计算(RC)方法,即将LiNbO3 中的14毫米长的微米波导作为复杂的非线性光学处理器使用。将数据集以数字方式编码成一个脉冲的频谱,然后在波导中推出。输出频谱不线性取决于输入。我们实验性地显示,一个简单的数字线性分类器,使用波导的输出频谱作为输入,使若干数据库的分类精确度比非透明数据增加约10美元。相比之下,一个具有40000美元深度光谱参数的深度数字神经网络(NNNN)能够以40美元的精确度运行一个基本光学参数。