We consider the neural ODE and optimal control perspective of supervised learning with $L^1(0,T;\mathbb{R}^{d_u})$ control penalties, where rather than only minimizing a final cost for the state, we integrate this cost over the entire time horizon. Under natural homogeneity assumptions on the nonlinear dynamics, we prove that any optimal control (for this cost) is sparse, in the sense that it vanishes beyond some positive stopping time. We also provide a polynomial stability estimate for the running cost of the state with respect to the time horizon. This can be seen as a \emph{turnpike property} result, for nonsmooth functionals and dynamics, and without any smallness assumptions on the data, both of which are new in the literature. In practical terms, the temporal sparsity and stability results could then be used to discard unnecessary layers in the corresponding residual neural network (ResNet), without removing relevant information.
翻译:我们认为,以$L1(0,T;\mathb{R ⁇ d_u}$L1(0,T;\mathb{R ⁇ d_u})控制罚款监督学习的神经代码和最佳控制视角是最好的,我们不仅可以最大限度地降低国家的最终成本,而且可以将这一成本整合到整个时间范围。在非线性动态的自然同质假设下,我们证明任何最佳控制(对于这一成本)是稀疏的,因为它会消失在某种积极的停止时间之外。我们还为时间范围方面的状态运行成本提供了多数值稳定性估算。这可以被看作是一个结果,对于非光线性功能和动态,以及数据上没有任何小的假设,两者在文献中都是新的。实际上,时间宽度和稳定性结果可以用来抛弃相应剩余神经网络(ResNet)中不必要的层层,而不会删除相关信息。