How to build and use dialogue data efficiently, and how to deploy models in different domains at scale can be two critical issues in building a task-oriented dialogue system. In this paper, we propose a novel manual-guided dialogue scheme to alleviate these problems, where the agent learns the tasks from both dialogue and manuals. The manual is an unstructured textual document that guides the agent in interacting with users and the database during the conversation. Our proposed scheme reduces the dependence of dialogue models on fine-grained domain ontology, and makes them more flexible to adapt to various domains. We then contribute a fully-annotated multi-domain dataset MagDial to support our scheme. It introduces three dialogue modeling subtasks: instruction matching, argument filling, and response generation. Modeling these subtasks is consistent with the human agent's behavior patterns. Experiments demonstrate that the manual-guided dialogue scheme improves data efficiency and domain scalability in building dialogue systems. The dataset and benchmark will be publicly available for promoting future research.
翻译:如何高效地建立和使用对话数据,以及如何在不同领域大规模部署模型,可能是建立面向任务的对话系统的两个关键问题。 在本文件中,我们提议了一个新的人工指导对话计划,以缓解这些问题,代理从对话和手册中学习任务。手册是一个非结构化的文本文件,指导代理与用户和数据库在对话中进行互动。我们提议的计划减少了对话模式对精细区分的域内文学的依赖,使其更灵活地适应不同领域。然后,我们贡献了一个全附加注释的多域数据集MagDial来支持我们的计划。它引入了三个对话模式子任务:指示匹配、参数填充和反应生成。这些子任务建模符合人类代理的行为模式。实验表明,人工指导的对话计划提高了数据效率和构建对话系统的域可缩放性。将公布数据集和基准,用于促进未来的研究。